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approximate the exact ones to within - E, 36 in the interval of motion I’ - n-l, x-i 
respectively. In this sense the above controls are optimal in the first approximation. 
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STABILITY OF THE PERIODIC SOLUTIONS OF QUASILINEAR 

AUTONOMOUS SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 

PMM Vol. 34, iW, 1970, pp.105-114 
A, P. PROSKURIAKOV 

(Moscow 
(Received April 1 4, 1969) 

Sufficient conditions for the asymptotic stability of quasilinear autonomous systems con- 

sisting of second-order equations are derived. The generating systems can have simple 

and multiple,commensurate and partly noncommensurate, and zero frequencies. The 
investigation is carried out with the aid of equations in variations for sufficiently small 
values of the parameter p. 

1. Let us consider the following quasilinear autonomous system with IZ degrees of 
freedom: n 

2 (aig’*k -f- C&k) = FFi (Xl, . . ., Xnl 2’1, . . ., X‘,, p) 

k-1 

aik = akil cik = cki (i S 1, . . ., fi) 
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We assume that the functions Fi are analytic in zkand xk within the ranges of these 
parameters, and also in the small parameter p for 0 < p < po. 

Let the generating system (for I” = 0) be a linear conservative system with constant 
coefficients whose kinetic energy is given by a homogeneous positive-definite quadratic 

form in the velocities and whose potential energy is a positive-definite form in the sys- 
tem coordinates. 

The oscillation frequencies are given by the equation 

A (02) = 1 Cik -w”aikI = 0 (1.2) 
Under the above conditions all of the roots of this equation are real and nonnegative. 

Some of them may be multiple roots. 

Let us isolate some group of commensurate frequencies from the complete set of fre- 
quencies of the generating system. Let this group contain frequencies with subscripts 
from 1 to 1 and let 0, = krOs (r= 1,. . ., 1) (1.3) 

where k, is a positive integer. We also include in this group all zero frequencies with 

subscripts from 1 3_ 1 tom, a,= 0 (r=l+i,...,m) (I.9 

The second group consists of all the remaining frequencies with subscripts from m+l 
to n which are not commensurate with the frequencies with the subscripts r = 1, . . ..l. 

We shall refer to these as the “noncommensurate” frequencies. 

The frequency CO,, is the frequency of the chosen single-frequency periodic solution 

of the generating system and T,, = 2n/oa is the period of this solution. The period 

of the solution of quasilinear system (1.1) is a function of the small parameter ~1. 
The generating system can always be transformed into normal coordinates. The quasi- 

linear system is then transformed into the corresponding quasinormal coordinates. A 

time transformation can be effected to make the period of the solution of the quasilinear 
system independent of the parameter p and equal to T,. As a result of these transfor- 

mations system (1.1) becomes 

ZPn + o,%, = POn, (21, . . ., z,, Zl’, . . . , z,‘, p) (r = 1, * . ., n) (4.5) 

kt us take zr’ (0) = 0. as one of our initial conditions. The formulas for the func- 
tions 2, (57) are p, 2.1 

2, (z) = (40 + P,) cos %Z + - *‘O,+ “sin o,Z + i [C,,(Z) + - * -1 pk 
r Lt .d 

RI, = 0, yl = 0 (?=I,..., I) (1.6) 

The quantities Brand y,. are equal to zero for p = 0. For r = I f 1, . . . , m the 
functions z, (z) can be obtained from formula (1.6) by taking its limit as We + 0. 
For r = m + 1, . . . , n the quantities A, and Bra are equal to zero. 

The functions C,I, (7) are given by the formulas 
t 

(r=l+i,...,m) 

0 

From now on we shall need only the functions crl (t) and their first derivatives 
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with respect to z for ‘G = To. Here H,t (Z) =i a, (~$0 z,Q’, 0). 
The amplitudes Ars and BP0 can be determined from the system of equations 

G,(TiJ = 0 (_r=l,. . ., I), C,,‘(To) - 0 (?=a... ., m) (1.8) 

Let us assume that the amplitude equations have simple solutions, i. e. that the func- 

tional determinant of system (1.8) is different from zero (the argument To has been 

omitted), 
(1.9) 

fn this case all the functions Z, (z) can be expanded in whole powers of the parame- 

ter Ir_. 
We note that the initial condition zr’ (0) = 0 implies that Crt’ (T,) = 0. Since 

this equation is satisfied identically, all of the derivatives of Cal’ (2’s) with respect to 

A,s and &.a are also equal to zero. 

2, Let us construct the equations in variations of system(l.5). 

y,“+ Qb2Yr = P$(?Y* -J- %Yl) (f=l,...,?z) (2.1) 

Here the T,-periodic solution under investigation has been substituted into the func- 
tions CD,. 

We know p] that each root of the characteristic equation of system (2.1) is associated 
with at least one particular solution ofthis system of the form 

Yr (z> = e@‘p*u, (z) (r, p L1= 1,. . ., n) Gw 

Here ok, are the characteristic exponents which become the roots of the fundamental 
equation of the system ( ano = -t_ ion) for ~1 = 0 ; u, (7) are To-periodic functions 
of ‘6. Two values of clp are associated with each subscript JI . For each multiple root 

of the characteristic equation the number of independent solutions of the form (2.2) is 
equal to the number of groups belonging to the given root, The remaining values of clp 
can be obtained from linearly dependent solutions of the same form. 

Let us replace the functions y,. (a) in Eqs. (‘2.1) by the expressions given by (2.2) . 

(r=l,. . ., a) (2.3) 
The solution of this equation for p = 0 can be obtained in the form 

uro (7) = Urei“J (2.4) 
Substituting this expression into the equation, we obtain the possible values of the 

quantity vr Yrt = f (up - (4)~ %2 = T (Up + 0,) (2.5) 
Hence, if the subscripts r and p belong to the different groups of subscripts (1, . . . , m) 

and (m f 1, . . . . n), it follows that for I_L = 0 the To-periodic solution of Eq. (2.3) 
can only be identically equal to zero (i.e. urO (7) = 0). This enables us to approxi- 

mate the exponents csn for the groups of commensurate and noncommensurate frequen- 
cies independently. 

The elementary divisors of matrix (1.2) are always simple under the above conditions. 
Hence, the number of any multiple root W’ of Eq. (1.2) is always equal to the multipli- 
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city of this root, The same applies to the frequencies w themselves if they are not equal 

to zero, However, the zero frequencies combine in pairs to form two-frequency groups. 
This means that the elementary divisors of matrix (1.2) are second-degree dlvisn~ for 
the zero frequencies. The matrix of the fundamental equation of system (2.1) has the 

same elementary divisors as the matrix (1.2) with respect to rhe frequencies w. 

There have been several papers on the stability of quasilinear systems consisting of 
first-order equations [4- 81. 

In [83 it is shown that the characteristic exponents a,and the functions u, (z) can be 

expanded in whole powers of fi’f/’ t where y is the multi&city of the elementary divisors 
of the ~o~~pbnd~g root of the fundamental equation of system (2.1). Tbis requires the 
fulfillment of two additional conditions which will be formulated below. 

Thus, for nonzero frequencies the quantities tlP and ur(1;) must be sought in the form 

of series in whole powers of the parameter p. If the index of the characteristic exponent 

as, assumes values from 1 to I, then the constant part of the exponent o+ = z!z ioP 

can be omitted. This follows from the fact that the quantity exp(a,,t) is a T,-periodic 
function of a and can be included in the corresponding functions u,. (z). We can there- 

fore write up = apl~+ . . . (p = I, . . . , I), clp c= apo -t a& + l - G (2.6) 

iP = m-i-l,...,nf ~,t~~=urs(z).cEfur~(z)~... (~‘=1,...,1,m_Jr1,*..,nf 
For the zero frequencies the expansions oi the ~o~es~nd~ng quantities must take the 

form of series in whole powers of p/g. Let us replace the functions u, (z) by the func- 

tions V,(Z). Since apa = 0 in this case, it follows that 

up= “pu~‘~z+upl~-+. .- (r,p=;t+I,.*.,rn) 

UF (Q = h (z> i- $%yr (z> f ~%I fq -I- * * - Gw 

From now on we shall compute the coefficients of the expansions of the exponents (xp 

up to and including the coefficient apl, 

3, Let us find the coefficients cxPl of the characteristic exponents for p = 4, . . . . 1. 
Since in this case ano = 0, we have 

Q, 

Let us construct the equation for the f~ctlons url .(z) for r = 5 I . . . , 1 

The subscript “0” appearing next to the derivatives of the functions a, means zS, z~’ 
and f~ in these derivatives have been replaced by $0, z,s’and 0. 

Transforming the right side of Eq. (3.2). we obtain the self-evident relations 

These formulas readily yield yet another relation, 
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(3.41 

Let us substitute the values of u,e (2) and t.&@e’ (7) as given by formulas (3.1) into the 
right side of Eq. (3.2) and make use of the preceding relation. This gives us 

m 

(F==f,...,i) (3.5) 

Let us construct the conditions of periodicity of the functions u,r (zl)* We can do this 

by multiplying the right sides of Eq. (3.5) by sino,r/w, and cosw,sr successively, 
f.mqrating from zero to T, , and equating the results to zero. Formulas (I. 8) must be 
used in carrying out these operations. 

Since all of the derivatives of C rr’ (T,) with respect to A,@ and B,, are equal to 
zero, it follows that one of the ~ondi~ons of periodic&y for f = 1 is of the form 

Qet T0 = 0, Hence,if Qr =#= 0, then _ 
cxPl = 0 

This coefficient corresponds to the zero characteristic exponent which autonomous sys- 
tems always possess, 

For Q1 = 0 the remaining conditions of periodicity are 

Here if,, is the Kronecker delta ; cjp, = 0 for s # r, and 6,, r=: 1, 

System 13.7) is a linear homog~neo~ system of f + m - 1 equation in P, (S = 

= ) ..‘$ i &and Q, fs = 2, e..) I). The solution of these equations is nontrivial only 
if the determinant of system (3.7) is equal to zero, i. e, only if 

(3.8) 

(cant, on next page) 
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*.*.*...*.,*.,.*~**.~............~ 

ac,i Wll' 8C,l' aMIlt aql’ l . _ ac,rt -- 
i3A1o l * l aAl, ~-+Bso ’ * * aB,, aAl**, aAl 

a&: * - * 
..*...*.**I.......*...*..* 

’ 'ac,; ac,i acmlf ac,i M,l’ 

aAl * * * aA 
-Jjg .** - -*.. 

aB,O a4+1,0 a A,0 

The order of the rows and columns in the determinant Al has been altered somewhat. 
The argument To of the quantities C,,(T,) and Crl’ (To) has been omitted. Moreover, 
the notation a~,.~ ac,, 

q-a~p~-Mot 
akfrl' aq.2 
aB,,= 8B,, - - ap,To (3.9) 

has been introduced for brevity. 
Expanding this determinant, we obtain an equation of degree 21 - 1 in apt@ = 1,. . 

. . . . 1) from which we can find the remaining 21 - 1 values (in addition to the zero 
value) of this coefficient of the characteristic exponents. The absolute term in equation 

(3.8) coincides with functional determinant (1.9) of the amplitude equations, which is 

not equal to zero by hypothesis. Thus, only one of the coefficients czpl ($ = 1, . . ., I) 

is equal to zero. 
One of the two additional conditions [8] of expandability of the characteristic expo- 

nents in whole powers of the parameter p for p = i, . . . , 1 in this case consists in the 

linear independence of the last rows (or columns) of determinant (3.8) not containing 
the coefficient ~1. This condition is fulfilled by virtue of (1.9). 

The second condition requires that all the roots of the determinant equation Al = 0 
for the first coefficient csPr be simple. Let us assume that this condition is fulfilled. 

4, Now let us determine the characteristic exponents for p = I i-- f , . . . , m. Here 

we make use of expansions (2.7) for up and V, (z). 
The functions vFo (z) are 

VrO (z) = R,, cos o,z + * sin q.2 (r=i,...,1) 
F 

v,o (z) = R,o (t = 2 + 1, . . . , ml (43 

We have the following equations for the functions v,.r/, (z) : 

Pf1;2 + o,%,*,, == - 2ctp~/,vr~' (l-=1,...,& v&=0 (r=1+I,...,m) 

Let us suppose that aP~i, f 0. The conditions of periodic&y of the functions u,z/* (z) 

for r = 1, . . . . 1 then imply that 

rJ,o (7) = 0 (?=I,. ..,L) (4.2) 
Thus, 

%i, 

VP/z (2) = G/z (r=1+l,...,m) 

Let us construct equations for the functions vrl (T)_ We have 

(4.3) 
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The conditions of periodicity of the functions V,i’ (T) for r = I j- 1, . . ., m yield 

up~/xToRrO =: 0 (r=E+l,...,m) (4.6) 

This system of linear homogeneous equations in Rs. has a nontrivial solution if 

A, = 

ac ’ b1.1 a%, 1 

-a---- liI,O 
u,:~~T~ . . . e 

77X0 
*...*......**.* 

Grill GrIl 
------“‘aA,o- aAl+*, 

$2’0 

Z2.Z 0 (4.7) 

Expanding the determinant, we obtain an equation of degree RZ - 1 in o+/a2 for 

p = E-k 1, . . . . m. Let us assume that all the roots of this equation are negative. 

Then all the coefficients CY+/~ are purely imaginary. 
In this case the first condition of expandability of the exponent in whole powers of 

~l~z is fulfilled automatically, We shall assume that the second condition as regards 
the nonmultiplicity of the roots of the determinant equation A, - 0 has been satisfied. 

Let us establish a correspondence between each value of the subscript “r”: and specific 

values of the subscript “p” (e.g. by setting p = f). System (4.6) then enables us to 

determine the ratios of the quantities RsO to any one of them, e. g. Reo* = R,,jR,, 
2 for each value of CQ,,~. If all the roots of Eq. (4.7) are simple, then each root is asso- 

ciated with its own system of values RsO* (s = l $- 1. . .., m>. 
The conditions of periodicity of the functions o,r (7) for I r = 1, . . . , 2 are 

The second formula of (4. 8) implies that $I~,2 = 0. Finally, let us construct thk 
equations for the functions v+,,~ (z) for r ,== I 3_ 1, . . . , m. We have 

Let us note the following fact. If we replace the quantities Rro by &I, in Eqs.(4.6), 
then all our conclusions concerning Eqs. (4.6) remain valid for the new equations. Thus, 
each sum of terms of the form m 

2 R ~--o$,~T,R,~,, (r=l+i,...,m) d2 aA 
S&+1 



Stability of periodic solutions of quasilinear autonomous systems 101 

can be made to vanish by suitable choice of the ratios R~~~~~R~~~, if c+*/~~ is one of 

the roots of Eq. (4.7). 
This remark, formulas (3.3) and (4.8). and the condition of periodicity of the function 

%*fsr (Z) for r = t + 1, . . . . m imply that 

2uplTORr0* = (r,p=l$-I,...,??&) 

Formula (4.10) defines 2 (m - 2) equal pairs of values of the real coefficient CZpl 

for p = 1 + 1, . . . . m. 

I, Finally let us consider the characteristic exponents for p = m $1,. , ., n corre- 
sponding to the noncommensurate frequencies. In this case the coefficients aPo = 

= & io,. Let us break up the group of noncommens~ate frequencies into subgroups 

in order to compute the coefficients CX~I. Each subgroup consists of some frequency w P and 
all the frequencies equal to it, as well as the frequencies satisfying one of the relations 

tar - @,i = c,wo, w, + 0, = c,wo (5.4) 

where c;, is a positive integer. Thus, each of the noncommensurate fieWenCieS OCCUTS in 

only one of the subgroups. The number of subgroups can range from one to n - m, 
Three cases are possible for each subgroup, 

a) The subgroup contains the frequency o, only. Then all the U,O (z’) = 0 for 

r # p and we have ho (z) = U,. only for r = p , In this case the condition of peri- 

odicity of the function url (z) for r = p yields two complex conjugate values of the 

coefficient a,I[9], 

&JO= T”[(?,,+ (q)O]dx 
0 

(5.2) 

b) The subgroup contains only a multiple frequency 61, of multiplicity 1. We have 
the following determinant equation for determining the coefficients apt: 

(p,q,s=r ,..., r+i--II (5.3) 

Equation (5.3) yields 2j complex conjugate values of the coefficient cXpl. 
c) Let us consider the general case where in addition to the simple or multiple fre- 

quency o, the subgroup also contains frequencies satisfying relations (5. I). The func- 

tions uro (T) for these frequencies are given by formulas (2.4) and (2.5). Let us con- 

struct the equation for the functions urI (z). 

u,; + 2apou,l’ -+ (cc~~~ + 0~2) u,~ = - 2aPl (scpo + iv,) Ce’“r’ -i- 

The Subscript “s” in the latter sum assumes all the values belonging to the subgroup under 
consideration. The left side of Eq. (5.4) is of the same form as the left side of the equa- 
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tion for urO (r). We therefore obtain the condition of periodic&y of the function u,i (z) 
by multiplying the right side of Eq. (5.4) by exp (-iv,%), integrating from 0 to 11’s , 
and equating the result to zero, We have 

- 2x,, (ccpo -)- ivr) TQU, = 0 (5.51 
We substitute in the value Y, = Y,~ from formula (2.5) for the fundamental frequency 

W, and the frequencies related to it by the fast relation of (5,1)1 and the value v, = y,s 
for the irequencies related to the ~damental frequency by the second relation of(5.1). 
This yields the following equation for determining the coefficient c.+,l : 

(p, r, s = m + ki, . . . , m + k$ (5.6) 

The upper signs in these expressions apply to the frequencies related to the fundamen- 

tal frequency by the first relation of (5.3.); the lower signs apply to the frequencies rela- 

ted to it by the second relation of (5.1). Equation (5.6) yields 2 (kj - /ii) complex 
conjugate values of the coefficient apf. As before, we assume that the roots of Eq.(5,6) 

are simple, 

C onctusion. We can draw the following conclusions for sufficiently small values 

of the parameter p . The sufficient conditions of asymptotic stability of the periodic 
solutions of quasilinear autonomous (1.X)* or of equivalent system (I, 5) under the assump- 
tions of Sect. 1 concerning the frequencies of the generating system are:(l) the imagi- 
nary character of all the coefficients clpli, of the characteristic exponents for p =-: L-j- 
A- 1, .*., m; (2) the negativeness of the real parts of all the coefficients apl for 
p=l , *--, rz with the exception of one coefficient which is equal to zero. 

Throughout our discussion we assumed that the determinant equations for c+,f 

(p = 1, . . . , I, m -E_ 1, . . . , rz ) and for cared,? (p -- 2 -k 1, . . . , m) had simple roots, 

If these equations have multiple roots. then the characteristic equations can be expanded 
in other powers of the parameter p than those assumed. 
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STABILITY OF PERIODIC SOLUTIONS OF QUASILINEAR 

ELASTIC CZROSCOPIC SYSTEMS 

WITH DISTRIBUTED AND CONCENTRATED PARAMETERS 

PMM Vol. 34, Npl., 1970, pp* 115-1’26 

M. fa, KUSHUL’ 
(Moscow) 

The stability of periodic solutions of quasilinear elastic slightly asymmetric gyroscopic 
systems with distributed and concentrated parameters is considered, The motion inves- 

tigated is described by a system of partial differential equations ; the boundary conditions 

and matching conditions at the sites of the concentrated parameters also take the form 
of quasilinear equations. The nonlinear functions in the equations of motion and in the 
boundary conditions are assumed to be of sufficiently general form ; this makes it possible 

to investigate the stability of the periodic solutions under the most varied perturbations. 
It is assumed that some of the natural frequencies of the linearized system can be criti- 

cal or resonance frequencies. The gyroscopic effect of the distributed mass is assumed 

to be negligibly small, as usual. 

The periodic oscillation states of unbalanced flexible rotors, some of whose supports 
have nonlinear characteristics, are constructed as an example. The equations in varia- 

tions are written out and it is shown that their stability can be investigated completely 

by the proposed method. 

1, Many problems of applied mechanics involve the action on quasilinear elastic 

gyroscopic systems of periodic forces whose frequencies are usually multiples of the 
angular velocity 61 of the gyro system rotor. Their equations of motion have periodic 
solutions with the period T = 27~ / o; however, these solutions may turn out to be 
unstable for various reasons, so that almost-periodic autooscillatory states (not always 
permissible ones) arise in the gyro system. The conditions of stability of the periodic 
oscillations therefore assume considerable importance. 

The motion of elastic gyro systems is described in the more complicted cases by a 


